35 research outputs found

    TiViPE Simulation of a Cortical Crossing Cell Model

    Full text link
    Abstract. Many cells in cat and monkey visual cortex (area V1 and area 17) respond to gratings and bar patterns of different orientation between center and surround [18]. It has been shown that these cells respond on average 3.3 times stronger to a crossing pattern than to a single bar [16]. In this paper a computational model for a group of neurons that respond solely to crossing patterns is proposed, and has been implemented in visual programming environment TiViPE [10]. Simulations show that the operator responds very accurately to crossing patterns that have an angular difference between 2 bars of 40 degrees or more, the operator responds appropriately to bar widths that are bound by 50 to 200 percent of the preferred bar width and is insensitive to non-uniform illumination conditions, which appear to be consistent with the experimental results.

    Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate.

    Get PDF
    Hereditary hearing loss often results from mutation of genes expressed by cochlear hair cells. Gene addition using AAV vectors has shown some efficacy in mouse models, but clinical application requires two additional advances. First, new AAV capsids must mediate efficient transgene expression in both inner and outer hair cells of the cochlea. Second, to have the best chance of clinical translation, these new vectors must also transduce hair cells in non-human primates. Here, we show that an AAV9 capsid variant, PHP.B, produces efficient transgene expression of a GFP reporter in both inner and outer hair cells of neonatal mice. We show also that AAV9-PHP.B mediates almost complete transduction of inner and outer HCs in a non-human primate. In a mouse model of Usher syndrome type 3A deafness (gene CLRN1), we use AAV9-PHP.B encoding Clrn1 to partially rescue hearing. Thus, we have identified a vector with promise for clinical treatment of hereditary hearing disorders, and we demonstrate, for the first time, viral transduction of the inner ear of a primate with an AAV vector

    Segregation of Object and Background Motion in Visual Area MT: Effects of Microstimulation on Eye Movements

    Get PDF
    Other neurons have receptive fields that spatially sum similar motion To track a moving object, its motion must first be cues over larger regions of the visual field and lack any distinguished from that of the background. The cen- such opponent surround; they thus respond best when ter--surround properties of neurons in the middle tem- the entire visual scene moves coherently. Such wide- poral visual area (MT) may be important for signaling field motion is generally an attribute of the background. the relative motion between object and background. Receptive fields of these types have been described in To test this, we microstimulated within MT and mea- a wide variety of species, ranging from insects to birds to sured the effects on monkeys' eye movements to mov- monkeys (Sterling and Wickelgren, 1969; Collett, 1971; ing targets. We found that stimulation at &quot

    Learning features of intermediate complexity for the recognition of biological motion

    No full text
    Abstract. Humans can recognize biological motion from strongly impoverished stimuli, like point-light displays. Although the neural mechanism underlying this robust perceptual process have not yet been clarified, one possible explanation is that the visual system extracts specific motion features that are suitable for the robust recognition of both normal and degraded stimuli. We present a neural model for biological motion recognition that learns robust mid-level motion features in an unsupervised way using a neurally plausible memory-trace learning rule. Optimal mid-level features were learnt from image motion sequences containing a walker with, or without background motion clutter. After learning of the motion features, the detection performance of the model substantially increases, in particular in presence of clutter. The learned mid-level motion features are characterized by horizontal opponent motion, where this feature type arises more frequently for the training stimuli without motion clutter. The learned features are consistent with recent psychophysical data that indicates that opponent motion might be critical for the detection of point light walkers.

    Integrated control of thermally distorted large space antennas

    No full text

    Circulating FGF21 Concentration, Fasting Plasma Glucose, and the Risk of Type 2 Diabetes: Results From the PREVEND Study.

    No full text
    OBJECTIVE: Fibroblast growth factor 21 (FGF21) is a peptide hormone synthesized by several organs and regulates, among others, energy homeostasis. In obesity, insulin resistance and type 2 diabetes (T2D), higher circulating FGF21 concentrations have been found. Temporal analyses in murine studies demonstrate that FGF21 increases before insulin resistance occurs. The current study aims to investigate in time-to-event analyses whether FGF21 may be an early biomarker in the development of T2D. RESEARCH DESIGN AND METHODS: Circulating FGF21 was measured using an immunoassay of the Mesoscale U-PLEX assay platform. The study outcome was incident T2D. Associations of circulating FGF21 concentration with T2D were quantified using Cox proportional hazards models with adjustments for potential confounders. RESULTS: We included 5244 participants aged 52 ± 12 years, of whom 50% were male. Median [interquartile range] circulating FGF21 concentration was 860 [525-1329] pg/mL. During 7.3 [6.1-7.7] years of follow-up, 299 (5.7%) participants developed T2D. In fully adjusted analyses, higher circulating FGF21 concentration was associated with an increased risk of incident T2D (hazard ratio per doubling: 1.26 [95% CI, 1.06-1.51]; P = 0.008), with effect modification by fasting plasma glucose, consistent with strengthening of the association at lower fasting glucose (interaction coefficient: -0.12; P = 0.022). CONCLUSION: Higher circulating FGF21 concentrations are independently associated with an increased risk of incident T2D in participants with a low fasting plasma glucose, making circulating FGF21 concentration a potential early biomarker for type 2 diabetes
    corecore